In-situ growth of MnO2 crystals under nanopore-constraint in carbon nanofibers and their electrochemical performance

نویسندگان

  • TrungHieu Le
  • Ying Yang
  • Liu Yu
  • Zheng-hong Huang
  • Feiyu Kang
چکیده

Growing MnO2 nanocrystals in the bulk of porous carbon nanofibers is conducted in a KMnO4 aqueous solution aimed to enhance the electrochemical performance of MnO2. The rate of redox reaction between KMnO4 and carbon was controlled by the concentration of KMnO4 in a neutral solution. The MnO2 nanoparticles grow along with (211) crystal faces when the redox reaction happens on the surface of fibers under 1D constraint, while the nanoparticles grow along with (200) crystal faces when the redox reaction happens in the bulk of fibers under 3D constraint. The composite, where MnO2 nanoparticles are formed in the bulk under a constraint, yields an electrode material for supercapacitors showing good electron transport, rapid ion penetration, fast and reversible Faradaic reaction, and excellent rate performance. The capacitance of the composite electrode could be 1282 F g-1 under a current density of 0.2 A g-1 in 1 M Na2SO4 electrolyte. A symmetric supercapacitor delivers energy density of 36 Wh kg-1 with power density of 39 W kg-1, and can maintain 7.5 Wh kg-1 at 10.3 kW kg-1. It exhibits an excellent electrochemical cycling stability with 101% initial capacitance and 95% columbic efficiency even after 1000 cycles of charge/discharge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of polyaniline/manganese oxide-MWCNT Nanocomposites as Supercapacitors

Composite electrodes of polyaniline/MnO2-Multi walled carbon nanotube (PANI/MnO2-MWCNT), MnO2-MWCNT nanocomposites and MWCNT was produced by the in situ direct coating approach. The supercapacitor performance of the nanocomposites was studied by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of electrodes were also investig...

متن کامل

MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery

Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic con...

متن کامل

Solid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure

A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an "in situ growth for conductive wrapping" and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capa...

متن کامل

Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors

In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...

متن کامل

Core–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol

Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016